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1 Basic definitions

1.1 Basic structure: the three-phase winding

Definition 1 (three-phase winding). A three-phase winding (or W3) is a tuple w =
(poles, span, slots, branches, phase groups) that satisfies the following axioms:

axiom 1 0 < poles, span, slots, branches, phase groups ∈ Z

axiom 2 poles = 2k, k ∈ Z

axiom 3 3 · poles ≤ slots

axiom 4 .

1. span ≤ 4 · q(w)

2. span <
slots

2
+ 1

axiom 5 slots = 3m,m ∈ Z

where q(w) =
slot

3 · poles

1.2 Useful definitions

Definition 2. Let w = (poles, span, slots, branches, phase groups) ∈W3.

spand(w) =
slots

poles
+ 1 (1)

Qint(w) ≡ q(w) ∈ Z (2)

Qpar(w) ≡ ∃k ∈ Z : q(w) = 2k (3)

Serie(w) ≡ branches = 1 (4)

Bp(w) ≡ poles = 2 (5)
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We call diametral span to the value defined in 1. Windings that satisfy 5 are called
bipolar windings.

1.3 Types of three-phase windings

Definition 3 (homologous three-phase winding). Let w =
= (poles, span, slots, branches, phase groups) ∈ W3. We’ll say that w is a homologous
three-phase winding, denoted by Homolog(w), when:

property 1 phase groups =
poles

2

property 2 poles = 2 · branches · k, k ∈ Z

property 3 3 · q(w) ≤ span
(note that this property is equivalent to spand(w)− 1 ≤ span).

Definition 4 (number of groups). Let w =
(poles, span, slots, branches, phase groups) ∈ W3. The number of groups of w is given
by groups(w). The function is defined by the following expression:

groups : W3→ Z≥0

groups(w) = 3 · phase groups

Definition 5 (single layer winding). Let w =
= (poles, span, slots, branches, phase groups) ∈ W3. We’ll call w a single layer three-
phase winding, denoted by Simple(w), iff it satisfies the following properties:

property 1 ¬Homolog(w) =⇒ q(w) ∈ Z

property 2 poles = 2 =⇒ q(w) ∈ Z

property 3 .

¬Homolog(w) =⇒ 2 · q(w) ≤ span

Homolog(w) ∧ slots

2 · groups(w)
∈ Z =⇒ span = spand(w)

Definition 6 (interleaved three-phase winding). Let w =
= (poles, span, slots, branches, phase groups) ∈ W3. We’ll say that w is a interleaved
three-phase winding, denoted by Inter(w), when:

property 1 phase groups = poles

property 2 poles = branches · k, k ∈ Z

property 3
spand(w)

2
≤ span
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property 4 Simple(w) =⇒ q(w) ∈ Z

Definition 7 (special winding). A w ∈ W3 is a special winding iff ¬Homolog(w) ∧
¬Inter(w).

Definition 8 (phase turns). Let w = (poles, span, slots, branches, phase groups) ∈
W3. The number of phase turns of w is given by phase turns(w), as defined below:

phase turns(w) =

{
slots/6 if Simple(w)

slots/3 otherwise

Definition 9 (group turns). Let w = (poles, span, slots, branches, phase groups) ∈
W3. The number of group turns of w is given by group turns(w), as defined below:

group turns(w) =
phase turns(w)

phase groups

Definition 10 (regular three-phase winding). A w ∈W3 is a regular three-phase wind-
ing, denoted by Regular(w), iff group turns(w) ∈ Z. It is irregular iff it is not regular.

2 Theorems

Theorem 1 (bipolarity). Let w = (poles, span, slots, branches, phase groups) ∈ W3,
with Bp(w), then:

span < spand(w)

Proof. First, let’s see that by definition, spand(w) = slots
poles + 1 = slots

2 + 1. But w ∈W3,

so w satisfies axiom 4 stating that span < slots
2 + 1 = spand(w).

Theorem 2 (group turns). Let w ∈W3.

(a) If Simple(w), then:

(a1) Homolog(w) =⇒ group turns(w) = q(w)

(a2) ¬Homolog(w) =⇒ group turns(w) =
q(w)
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(b) If ¬Simple(w), then:

(b1) Homolog(w) =⇒ group turns(w) = 2 · q(w)

(b2) ¬Homolog(w) =⇒ group turns(w) = q(w)

Proof. Let’s suppose that w = (poles, span, slots, branches, phase groups). We will only
show (a1), the rest of cases are similar.
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In this case we know that Simple(w) and Homolog(w), so:

group turns(w) = (definition of group turns)

=
phase turns(w)

phase groups
(definition of phase turns)

=
slots

6 · phase groups
(property 1 of homologous winding)

=
slots

6 · poles2

=
slots

3 · poles
(definition of q)

= q(w)

Theorem 3 (diametral span). Let w = (poles, span, slots, branches, phase groups)
∈W3, with Regular(w), Homolog(w) and Simple(w), then:

span = spand(w).

Proof. As Regular(w), we know that group turns(w) ∈ Z. But then by definition of
group turns it follows that phase turns(w) is a multiple of phase groups. Simple(w) as
we know, so by definition of phase turns we see that slots

6 is a multiple of phase groups.
Therefore, slots must be a multiple of 6 · phase groups. By definition of groups,
6 · phase groups = 2 · groups(w), then slots is a multiple of 2 · groups(w). Thus,

slots
2·groups(w) ∈ Z.

Now, we know that Homolog(w) and that slots
2·groups(w) ∈ Z. We also know by hy-

pothesis that Simple(w). Therefore, by property 3 of Simple, we conclude that
span = spand(w).

Theorem 4 (polarity). Let w = (poles, span, slots, branches, phase groups) ∈ W3.
Then:

¬(Homolog(w) ∧ Inter(w))

This means that w could be an homologous winding or an interleaved winding (or
none), but not both at the same time.

Proof. If we assume that Homolog(w), then by property 1 of homologous windings we
know that phase groups = poles

2 . But then phase groups 6= poles because poles > 0, by
axiom 1 of three-phase windings. Thus, it can’t be that Inter(w) because in that case
property 1 of interleaved windings would be broken.

If we assume that Inter(w), the proof procedure is similar.
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